
Chapter 4

Convolution

Searching for patterns in time and space makes the pattern recognition
task you studied in Chapter 1 more challenging. Maybe you, for instance,
would like the Tsetlin machine to recognize objects inside an image. Before
the Tsetlin machine can learn their appearance, it must locate them. But
without knowing their appearance in the first place, how can they be found?
In this chapter, you discover how the Tsetlin machine can solve this two-
sided problem using convolution with rules.

In Section 4.1, you study two illustrative tasks within health and image
analysis. They capture the dual nature of the problem and why you need
to perform localization and learning together.

Then, you learn how to divide an image into multiple patches in Sec-
tion 4.2. The division allows the Tsetlin machine to focus on one image
piece at a time, giving it a way to direct its attention.

Multiple image pieces require a new approach to evaluating and learning
rules. When each input image turns into several parts, you need a strategy
for selecting which part to focus on and which to ignore. We cover the new
form of rule evaluation in Section 4.3, while Section 4.4 addresses learning.

Finally, Section 4.5 teaches how to use a patch’s position inside the
image to create more precise rules. The purpose is to narrow down the
pattern matching to relevant image regions.

73

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

After reading this chapter, you will know how to build a convolutional
Tsetlin machine that can recognize patterns in time and space.

4.1 Recognizing Patterns in Time and
Space

Recognizing patterns in time and space can be useful in many applications.

Figure 4.1: An electrocardiogram (ECG) for detecting heart disease (from
Zhang et al., 2023).

Detecting Heart Disease. Figure 4.1 illustrates one example. It depicts
an electrocardiogram (ECG) that captures the heart’s electrical activity,
recorded by electrodes on the limbs and chest of the patient. Notice the
dotted rectangles in the figure. Inside each rectangle, you see an ECG
waveform. Some of the waveforms may reveal heart disease. However, you
do not know which ones. Accordingly, the task of the Tsetlin machine is to
scan through the ECG, simultaneously locating and learning the waveform
shapes that indicate disease.

Image Analysis. Recognizing flowers in an image is another example
(Figure 4.2). Using the entire image as input makes the task unnecessarily
di�cult. The flowers can appear in di↵erent places, and each position gives
di↵erent results. The Tsetlin machine from Chapter 1 must then learn
how the flowers appear in all possible locations. Now, consider instead the
image content inside the yellow rectangle. By moving the rectangle around,
the Tsetlin machine can scan for flowers. It must then learn to skip the
background while recognizing when the rectangle encloses flowers. In this
manner, it can capture their appearance, regardless of location.

74

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Figure 4.2: A flower in a field.

4.2 Input and Patterns

The key to overcoming the above challenge is to use convolution with rules,
which you will learn to do here.

Circle

Cross

Table 4.1: Eight black-and-white images from the classes Circle and Cross.

Example Images. The eight black-and-white images in Table 4.1 are
instructive for understanding rule-based convolution. Those in the first row
contain circles. The second row of images contains crosses. So, you have
two classes: Circle and Cross. Notice how the two shapes appear in various

75

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

locations. Accordingly, Table 4.1 demonstrates the essence of convolution
— the need to scan for smaller patterns within a larger space.

Boolean Features. Your first step is to make Boolean features out of
the images. To do that, give each image pixel a truth value, True for
black and False for white. You then get one feature per pixel. Table 4.2
organizes these into four rows and four columns according to the location
of the pixels. In this manner, you end up with 4 ⇥ 4 = 16 features. Name
each Xi,j where i denotes the pixel row and j the column. This structure
is convenient later when we dive into convolution.

Brute Force Solution. A brute force solution could learn the locations
of Circle and Cross separately, giving eight rules. An example of this is rule
R1 below. It recognizes Circle in the upper top left corner of the image.

R1: if X1,2 and X2,1 and not X2,2 and X2,3 and X3,2 then Circle.

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

Table 4.2: Black-and-white image described with 16 Boolean features.

X1,2

X2,1 X2,2 X2,3

X3,2

R1

X1,3

X2,2 X2,3 X2,4

X3,3

R2

X2,2

X3,1 X3,2 X3,3

X4,2

R3

X2,3

X3,2 X3,3 X3,4

X4,3

R4

Table 4.3: Condition part of rules R1, R2, R3, and R4. Together, the rules
captures the Circle pattern at each corner of the image.

76

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4

Table 4.4: A rectangular 3⇥3 convolution window at four di↵erent locations.

You find a visualization of the rule in the upper left part of Table 4.3. The
features X1,2, X2,1, X2,3, and X3,2 trace four black pixels in a circle. At
the centre of the outlined circle, X2,2 means feature X2,2 negated with not.
The negation tells you that the middle pixel must be white to match the
rule. In the same way, each other Circle location requires its own pattern,
again visualized in Table 4.3:

R2: if X1,3 and X2,2 and not X2,3 and X2,4 and X3,3 then Circle.

R3: if X2,2 and X3,1 and not X3,2 and X3,3 and X4,2 then Circle.

R4: if X2,3 and X3,2 and not X3,3 and X3,4 and X4,3 then Circle.

Finally, you also need four rules for Cross. The formulation of these is left
as an exercise.

Convolution Window. You solve the above task more e�ciently by
looking at the image through a rectangular window — the convolution win-

dow. The convolution window encloses a patch of pixels. By moving the
window around, you can investigate the pixels it contains, looking for Circle
or Cross. Table 4.4 illustrates this approach. The window is outlined in
red and organizes nine pixels in three rows and three columns. Here, you
have four possible window locations: (1) upper left, (2) upper right, (3)

77

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

X1,1 X1,2 X1,3 ·
X2,1 X2,2 X2,3 ·
X3,1 X3,2 X3,3 ·
· · · ·

· X1,1 X1,2 X1,3

· X2,1 X2,2 X2,3

· X3,1 X3,2 X3,3

· · · ·

· · · ·
X1,1 X1,2 X1,3 ·
X2,1 X2,2 X2,3 ·
X3,1 X3,2 X3,3 ·

· · · ·
· X1,1 X1,2 X1,3

· X2,1 X2,2 X2,3

· X3,1 X3,2 X3,3

Table 4.5: Location-independent local view of 3⇥ 3 patch features.

lower left, and (4) lower right. Each placement allows the Tsetlin machine
to detect Circle or Cross in that location.

Local View. We give the Tsetlin machine a local view by using the pixels
inside the convolution window as features, disregarding the pixels on the
outside. We refer to the enclosed pixels as patch features because they rep-
resent the image patch delineated by the window. This approach separates
the representation from the placement of the window within the image,
as shown in Table 4.5. You get the same nine features in every position.
Accordingly, the Tsetlin machine can learn the Circle and Cross patterns
independently of window location. You get away with two rules instead of
eight:

R5: if X1,2 and X2,1 and not X2,2 and X2,3 and X3,2 then Circle.

R6: if X1,2 and X2,1 and X2,2 and X2,3 and X3,2 then Cross.

Furthermore, increasing the size of the image does not a↵ect the rules. A
larger image gives additional window locations, but the rules remain the
same.

Remark – 1D Convolution. Recall the ECG analysis in Figure 4.1.
There your data was waveforms, and not a 2D image. For such cases, you

78

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

Table 4.6: 1D convolution with three features per step in the sequence.

can perform 1D convolution. You see an example of this in Table 4.6.
The only di↵erence from 2D convolution is that the convolution window
is moving in the horizontal direction only. Step-by-step, it passes over the
features that describe each point in time. Here, you have three features and
four steps. We will return to such time-series in Chapter 10.

4.3 Rule Evaluation With Convolution

Classification with convolution follows the procedure from Chapter 1, ex-
cept for the evaluation of rules. You will now discover how rule evaluation
changes to accommodate for convolution. Start by considering the following
input image of size 4⇥ 4:

.

Use a convolution window of size 3⇥ 3 and rule R5 above as an example.

Stepwise Procedure. Figure 4.3 shows the procedure for rule evaluation
under convolution, step-by-step. This procedure replaces the rule evaluation
of Section 1.2. Each step is described below:

79

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Convolution
Window

Image
Patches

Rule

Matching False False True False

Evaluation False or False or True or False = True

(0,0) (1,0) (0,1) (1,1)

Patch
Features

Figure 4.3: Rule-based convolution step-by-step.

1. Convolution Window. Place a convolution window on each pos-
sible position (x, y) in the image. Here, x refers to a pixel column
and y to a pixel row, counting from left to right and top to bottom.
Align the upper left corner of the window with the image pixel in
each position. There are four possible convolution window positions:
(0, 0), (1, 0), (0, 1), and (1, 1), shown from left to right in the figure.

2. Image Patches. Each convolution window position produces an im-

age patch. The image patch consists of the pixels that the convolution

80

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

window delineates in the image. This procedure gives the following
four patches:

.

3. Patch Features. Produce the Boolean features

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

per image patch. A black pixel is True while a white pixel is False:

F F F
F T F
T F T

F F F
T F F
F T F

F T F
T F T
F T F

T F F
F T F
T F F

.

4. Matching. Match the rule under evaluation against the features of
each patch. Our example rule is: if X1,2 and X2,1 and not X2,2 and
X2,3 and X3,2 then Circle. The matching then gives four outcomes:

False, False, True, and False.

5. Evaluation. Finally, evaluate the rule for the image itself by doing
or across the patch matches:

False or False or True or False = True.

A crucial property of the above evaluation steps is the following. You get
only one output per rule for the given input image. In other words, from
this point, you follow the same classification procedure as the one you saw
in Chapter 1.

81

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Figure 4.4: A truck with matching rules shown (by Vojtech Halenka, 2023).

Remark – Rule Interaction in Convolution. Section 1.5 of Chapter 1
taught you how multiple rules coordinate to classify the input. Now, the
rules specialize in di↵erent kinds of image patches. Together, they can then
give an overall assessment of the entire input. You see an example of this
in Figure 4.4, which depicts a truck. Each circle overlapping a pixel refers
to a matching rule. The circle’s color points out which one. Accordingly,
six di↵erent rules match the patches in the image. The red circle rule, for
instance, captures the black parts of the truck. The pink circle rule, on the
other hand, captures the ground beneath it.

4.4 Rule Learning With Convolution

Like the standard Tsetlin machine in Chapter 1, learning with convolution
uses Recognize-, Erase-, and Reject Feedback. Recall how you updated the
rules based on the input features. Each feedback type had its own way of
using the features’ truth values to achieve its e↵ect.

However, convolution is di↵erent in one crucial way. A single input
image turns into multiple image patches. And a single rule can match
many of them at the same time. Multiple matches require a strategy for
selecting which patch to update with. Our strategy is random selection,
and you find the updated algorithm for learning below.

82

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Convolution
Window

Image
Patches

Rule

Matching False False True False

Evaluation False or False or True or False = True

(0,0) (1,0) (0,1) (1,1)

Patch
Features

Rule
Updating

False

Target: Recognize Feedback
Not Target: Reject Feedback

Target: Erase Feedback
Not Target: No Feedback

True

Random
Match No Match

R
andom

 M
atch

Figure 4.5: Rule-based convolution step-by-step – learning.

83

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Complete Learning Algorithm. The convolutional Tsetlin machine
learns complementary rules as follows (Figure 4.5 illustrates the steps for a
single rule):

1. Observe a new image along with its class, and execute the following

convolution steps (see Section 4.2):

a) Move the convolution window across the image to produce the

image patches.

b) Booleanize each image patch into features.

2. For each rule, perform the these evaluation steps (see Section 4.3):

a) Match its condition against each image patch using the patch

features.

b) Obtain the truth value of the rule’s condition per patch.

c) Or these together to produce a single truth value for the entire

input image.

3. Calculate the vote sum (see Section 1.5):

a) Identify the rules that evaluated to True. Use these for voting.

b) Add up the votes in favour of the image’s class.

c) Subtract the votes in favour of the other class.

d) Refer to the summation outcome as v.

e) Set v to the Vote Margin T if larger than T and to �T if smaller

than �T .

4. Go through each rule and give it feedback if Rand() T�v
2T , drawn

randomly per rule:

a) Give the rule Recognize or Erase Feedback if the rule belongs to

the image’s class (see Section 1.3):

i. If the rule’s condition is True, give it Recognize Feedback.

Use one of the image patches that matches the rule for the

updating. If there are multiple matching patches, pick one of

them randomly.

84

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

ii. When the rule condition is False, apply Erase Feedback. No-

tice that Erase Feedback does not require the truth values of

the patch features.

b) Give the rule Reject Feedback if its condition is True and it be-

longs to another class (see Section 1.4). For updating, randomly

pick an image patch from those matching the rule.

5. Goto 1.

Remark. Notice the new vote margin parameter T above. In Chap-
ter 1, you used a vote margin of two. By increasing T beyond two, more
rules will collaborate to classify each input image. The reason is that the
vote sum v must approach T to satisfy the vote margin, which drives the
learning process to include more rules in the summation of votes. Recall
the example of six rules coordinating to classify the image in Figure 4.4.
That was possible due to a higher vote margin.

Figure 4.6: Hand-drawn digit ’7’ with the solid red rectangle marking an
upper horizontal curve of the digit. The dotted red rectangle delineate
possible appearances of such a pattern for other hand-drawn sevens.

4.5 Position Encoding

Sometimes, a patch’s position inside the image can be crucial for correctly
classifying the image. Figure 4.6 showcases one such example. Here, the
task is to recognize a handwritten digit. The solid red rectangle shows a
patch that captures the horizontal curve in the top part of the number ’7’.
Constraining this pattern to the upper area of the image, marked by the

85

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

dotted red rectangle, increases precision. You can then eliminate erroneous
matches against the lower part of digit ’2’. Next, you learn to incorporate
such position information with so-called thermometer encoding.

Encoding

Value

Features

.

Figure 4.7: Thermometer encoding.

Thermometer Encoding. Thermometer encoding is a way of encoding
integer numbers so that you take into account their natural order. Like
a thermometer measures temperature, the encoding measures the size of a
number. From Figure 4.7, observe how you use the same number of features
as the maximum integer value. You get the integer value by counting how
many of the features are True. The encoding captures the order of numbers
by giving you the comparison operator, exemplified as follows:

• When the feature X1 is True, it matches values greater than or equal
to one, in other words, values one, two, and three. It does not match
value zero because in its encoding, X1 is False.

• Similarly, you can specify less than three with not X3. Then, the
encoding of the values zero, one, and two matches.

• You are now empowered to create a range: X1 and not X3. This
condition means greater than or equal to one, while less than three.
You have enclosed the values one and two in the range.

You can, of course, encode the four numbers with only two bits by using
standard binary encoding of integers. That will give you a di↵erent kind of
expression power. For instance, you can specify even numbers by match-
ing against the least significant bit being zero. However, you then lose
the ability to conveniently create ranges with a single rule, which is more
appropriate for defining rectangular bounding boxes in image analysis.

86

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

Convolution
Window

Image
Patches

(0,0) (1,0) (0,1) (1,1)

Patch
Features
w/Position
Encoding

(0,0) (1,0) (0,1) (1,1)

X

Y

X

Y

X

Y

X

Y

Figure 4.8: Patch features including position encoding.

Patch Positioning. You are now ready to use thermometer encoding
to capture the position of each patch inside the image. Figure 4.8 shows
the procedure. Notice the two thermometers. One is for the X-dimension
and one is for the Y -dimension. Since the four possible patch positions
are (0, 0), (1, 0), (0, 1), and (1, 1), you only need one feature per dimension.
With these new features, the rules can also learn in which rectangular region
the patch features applies. For instance, if you require that Y is True, you
get the two lower patches. If Y is False, you obtain the upper ones.

4.6 Summary

Here are the main points from this chapter:

• A Tsetlin machine does rule-based convolution.

• Instead of matching against the complete image, each rule in a con-

87

An Introduction to Tsetlin Machines (9/12/23) Ole-Christo↵er Granmo

volutional Tsetlin machine examines rectangular patches inside the
image.

• The only di↵erence between standard classification and convolution-
based classification is the evaluation of the rule.

• In convolution, a rule is matched against many image patches, each
image patch giving a truth value. The evaluation of the rule becomes
an or over these truth values. In other words, the rule condition is
True if it matches at least one of the image patches. Otherwise, it is
False.

• Learning in convolution is also similar to learning in a standard Tsetlin
machine, apart from one crucial di↵erence. The patch features of one
of the matching image patches is randomly selected for updating the
rule.

• Tsetlin machine convolution can incorporate information on the po-
sition of the image patches inside the image. This is done by using
thermometer encoding to encode the (X, Y)-coordinates of the image
patches.

88

