
Chapter 2

Classification

In Chapter 1, you learned how to implement a Tsetlin machine for classifi-
cation tasks, obtaining intuition on how it works. The goal of Chapter 2 is
to give you a deeper understanding. Through mathematical analysis, you
discover the exact nature of Tsetlin machine learning, including a mathe-
matical description of the learning outcome. The chapter is optional, and
you can proceed to Chapter 3 and regression if you like to focus on building
intuitive algorithm understanding.

In this chapter, you first study single-literal learning in Section 2.1.
Single-literal learning is a so-called stochastic process. Specifying this pro-
cess, you obtain simple formulas that describe the learning outcome exactly.
The learning outcome reveals how the Tsetlin machine picks up frequent
literals, emphasizing literals that distinguish between objects of di↵erent
classes. You will also see that the learning gets more accurate by increasing
memory depth.

In Section 2.2, you follow the same strategy for rules with two literals.
However, this time, you get a more sophisticated stochastic process that
also captures how literals interact. The well-known Prisoner’s Dilemma
from game theory casts light on this interaction. The learning outcome
shows how the Tsetlin machine selects the best literals out of many and
combines multiple for increased precision.

Finally, you investigate two-rule learning in Section 2.3. The stochastic
process now covers rule interaction, which emerges from literal interaction.
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Figure 2.1: A rule memory of depth 4 with a single literal in position 2.

It is the Voting Margin that governs the interaction between rules. You
uncover how the Tsetlin machine avoids sub-optimal configurations — so-
called local optima — producing optimal ones instead.

In all these cases, you will see that the outcome of Tsetlin machine
learning is not a single solution. Instead, it is a probability distribution over
solutions. The Tsetlin machine never stands still, visiting all the candidate
solutions with continuous learning.

2.1 Single-Literal Learning

Recall from Chapter 1 how the Tsetlin machine keeps literals in graded
memory, ranging from 1 (Maximally Forgotten) to 10 (Maximally Memo-
rized). You can vary the value for Maximally Memorized to create memories
of di↵erent depths. For example, the memory in Figure 2.1 is of depth four
and contains a single literal in position two. As you know from Chapter 1,
Recognize, Erase, and Reject feedback change the literal’s location in mem-
ory during learning.1 The question is: What is the outcome of this learning

process?

1
Please note that I have renamed Type I and Type II Feedback from the first version

of Chapter 1 as Recognize, Erase, and Reject Feedback. The reason is to make the

feedback types easier to remember. A new version of Chapter 1 is now available.
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Figure 2.2: Transition graph of a weather process.

Markov Chain

You find the answer to the question using a Markov chain. In brief, a
Markov chain describes a sequence of states, illustrated in Figure 2.2. The
figure depicts how the weather changes day-to-day, from Sunny to Sunny,
Sunny to Rainy, Rainy to Rainy, and Rainy to Sunny.

Transition Graph. A graph describes how the weather changes. It con-
sists of nodes and edges :

• Nodes. The nodes are the possible states, S or R, that is, Sunny or
Rainy weather.

• Edges. The edges are the state transitions: S ! S, S ! R, R ! R,
and R ! S. Each edge has a probability, which is the probability of
the transition. So, the weather remains Sunny (S) with probability
0.8 and transitions to Rainy (R) with probability 0.2.

This is the transition graph of the Markov chain. A sequence of states
could look like this: SSRS. Two days are Sunny, followed by a Rainy

day, followed by a Sunny day. The probability of these transitions are
0.8 · 0.2 · 0.7 = 0.112.
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Markov Property. The defining property of a Markov chain is that the
probability of a state transition only depends on the current state. For the
weather, the Markov property says that tomorrow’s weather only depends
on today’s.

Stationary Distribution. To discover more about a Markov chain, you
can run it for a long time. Then you find the probability of a Sunny or Rainy
day happening in general. These probabilities are the stationary distribution
of the chain — the state probabilities that the Markov chain stabilizes on
and that remain unchanged as time progresses. Mathematically, you get
the stationary distribution by solving the following equations:

P (S) = 0.8 · P (S) + 0.7 · P (R) (2.1)

P (R) = 0.2 · P (S) + 0.3 · P (R) (2.2)

1 = P (S) + P (R). (2.3)

Here, P (S) is the probability of Sunny weather and P (R) is the probability
of Rainy weather. Referring to Figure 2.2, notice the following:

• The right-hand side of Eqn. 2.1 calculates the probability of ending
up in state S. You end up in S if you already are in state S and
stay there: 0.8 ·P (S). You also end up in S if you are in state R, but
transition to S: 0.7·P (R). The state probability P (S) also appears on
the left-hand side. You seek the state probability that does not change

after a transition.

• Similarly, Eqn. 2.2 says that state probability P (R) also must remain
una↵ected by the transition.

• Finally, Eqn. 2.3 captures that you always stay either in state S or
R. Hence, the probabilities sum to 1.

Solving the equations, you get:

P (S) ⇡ 0.78 (2.4)

P (R) ⇡ 0.22. (2.5)

In other words, the probability of Sunny weather on any day becomes 0.78
after the chain has progressed for some time. The probability of Rainy

weather becomes 0.22.
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Figure 2.3: Generic transition graph of the weather process.

Stationary Distribution with Symbols. It is also possible to find the
stationary distribution when you do not know the transition probabilities.
You simply replace them with symbols. Figure 2.3 depicts the symbolic
version of the weather process. The probability 0.8 of transitioning from S
to S is replaced by P (S ! S), for instance. Solving the equations using
symbols gives you more insight into the weather. You obtain the probability
of Sunny and Rainy weather for any transition probabilities:

P (S) = P (R!S)
P (R!S)�P (S!S)+1

(2.6)

P (R) = P (S!R)

P (R!S)�P (S!S)+1
. (2.7)

Markov Chain of Single Literal Learning

In the same way that you determine the probability of Sunny and Rainy

weather, you can find the learning outcome of a Tsetlin machine. To do
this, you start with composing the Markov chain of single-literal learning.
The resulting learning outcome equations give you important insight into
the Tsetlin machine.

The Literal States. First, you need the states, like Sunny and Rainy

weather. In brief, the literal’s position in memory becomes its state. So,
the memory in Figure 2.4 of depth four gives four states. These states are
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Figure 2.4: A four-state Literal Automaton.

numbered 1 (Maximally Forgotten) to 2 (Forgotten) and then 3 (Memo-
rized) to 4 (Maximally Memorized). I will, from now on, refer to a literal
with memory as a Literal Automaton to highlight that it is a so-called
finite-state automaton.

Class. Next, you need the classes. Instead of recognizing a specific class,
like Car or Recurrence from Chapter 1, you now use the generic class Y .
Further, let Y mean any class other than Y .

Literal Truth Value. You also need symbols for the truth values of the
literal. Instead of saying that for instance Four Wheels is True, use the
symbol L. Conversely, use L to tell that Four Wheels is False.

Training Examples. Together with the class, a single literal provides
four di↵erent kinds of observations:
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1 2 3 4

Figure 2.5: Recognize Feedback with four-state Literal Automaton and
Memorize Value 1.0.

1. Observation (L, Y ) means the literal is True and the class is Y .

2. Observation (L, Y ) means the literal is False and the class is Y .

3. Observation (L, Y ) means the literal is True and the class is Y .

4. Observation (L, Y ) means the literal is False and the class is Y .

Each kind of observation gives di↵erent memory updates. Recall from Chap-
ter 1 how Recognize, Erase, and Reject Feedback operate. You can then
proceed to build the Markov chain.

Recognize Feedback. Recognize Feedback happens when you observe
(L, Y ). Figure 2.5 shows the transitions of Recognize Feedback. Notice
how each transition increases the literal’s position in memory with proba-
bility 1.0 (up to Maximally Memorized), meaning that the transitions al-
ways happen. From now on, always use Memorize Value 1.0 for Recognize
Feedback.

Erase Feedback. Erase Feedback happens when you observe (L, Y ) and
it decreases the literal’s position in memory randomly according to the
Forget Value. Use Forget Value 1

s from now on, as typical in the research
literature. The symbol s refers to specificity — increasing s makes the
rules more specific. Erase Feedback then decreases the literal’s position
with probability 1

s , unless already in State 1 (Maximally Forgotten). This
means that the literal stays in place with probability 1 for State 1, and with
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1 2 3 4

Figure 2.6: Erase Feedback with four-state Literal Automaton and Forget
Value 1

s .

1 2 3 4

Figure 2.7: Reject Feedback with four-state Literal Automaton.

probability 1 � 1

s for States 2 to 4. Figure 2.6 shows the Erase Feedback
transitions.

Reject Feedback. Reject Feedback occurs whenever you observe (L, Y ).
If the literal is on the Forgotten side of memory, increase its position. Oth-
erwise, let it stay in place. Figure 2.7 shows the resulting transitions for
the four-state Literal Automaton. The literal is on the Forgotten side in
State 1 and State 2, hence its position increases only in those two states.

Feedback Combined. You now have three di↵erent transition graphs
for the Markov chain you build. You use the Recognize Feedback transi-
tions for observation (L, Y ), the Erase Feedback transitions for observation
(L, Y ), and the Reject Feedback transitions for observation (L, Y ). Finally,
nothing happens when you observe (L, Y ). This is the No Feedback case.
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As you see, each of these four di↵erent kinds of observations give di↵erent
transitions. You therefore need to know the probability of each happening.
Then you can build the full Markov chain for single-literal learning. In other
words, you need to know: P (LY ), P (LY ), P (LY ), and P (LY ). From the
standard definition of conditional probabilities, you can rewrite these as:
P (L|Y )P (Y ), P (L|Y )P (Y ), P (L|Y )P (Y ), and P (L|Y )P (Y ), respectively.
With the latter information in place, you can now obtain the probability of
transitioning from State i to State j, denoted P (i ! j):

P (i ! j) = P (i ! j|“Recognize”)P (“Recognize”) (2.8)

+ P (i ! j|“Erase”)P (“Erase”) (2.9)

+ P (i ! j|“Reject”)P (“Reject”) (2.10)

+ P (i ! j|“No Feedback)P (“No Feedback”). (2.11)

Since each feedback type triggers from its own observation, you can rewrite
the above formula as follows:

P (i ! j) = P (i ! j|LY )P (L|Y )P (Y ) (2.12)

+ P (i ! j|LY )P (L|Y )P (Y ) (2.13)

+ P (i ! j|LY )P (L|Y )P (Y ) (2.14)

+ P (i ! j|LY )P (L|Y )P (Y ). (2.15)

Using this formula on each Literal Automaton transition, you obtain the
Markov chain for single-literal learning in Figure 2.8. As an example, you

1 2 3 4

Figure 2.8: Transition graph of four-state Literal Automaton.
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get P (1 ! 2) from:

P (1 ! 2) = P (1 ! 2|LY )P (L|Y )P (Y ) (2.16)

+ P (1 ! 2|LY )P (L|Y )P (Y ) (2.17)

+ P (1 ! 2|LY )P (L|Y )P (Y ) (2.18)

+ P (1 ! 2|LY )P (L|Y )P (Y ). (2.19)

Then you substitute with the actual transition probabilities of each feedback
type:

P (1 ! 2) = 1 · P (L|Y )P (Y ) (2.20)

+ 0 · P (L|Y )P (Y ) (2.21)

+ 1 · P (L|Y )P (Y ) (2.22)

+ 0 · P (L|Y )P (Y ). (2.23)

Notice that one transition probability is left out per state in the figure.
To save space, the figure omits the probability of staying in place, i.e.,
P (i ! i). This probability is simply 1 minus the sum of the outbound
transition probabilities. For instance, the probability of staying in State 1
is

P (1 ! 1) = 1� (P (L|Y )P (Y ) + P (L|Y )P (Y )). (2.24)

Single-Literal Transition Matrix

With the large number of transition probabilities, organizing them in a
matrix M is helpful. Place each transition probability P (i ! j) in the
row i and column j entry of the matrix. The formulas quickly become
lengthy, so, to save space, use shorthand notation for the probabilities. Use
⇡i to denote the probability of being in State i, i.e., ⇡i = P (i). Further, use
⇡ij to denote the transition probability P (i ! j), that is, ⇡ij = P (i ! j).
Finally, use pY to denote P (Y ), pLY to denote P (L|Y ), pL

Y
to denote P (L|Y ),

and so on. As an example, Equation 2.24 above then becomes

⇡11 = 1� (pLY pY + pLY pY ). (2.25)

Filling out the M-matrix, you get:
2

66664

1� (pLY pY + pL
Y
pY ) pLY pY + pL

Y
pY 0 0

1
s p

L
Y pY 1� (

1
s p

L
Y pY + pLY pY + pL

Y
pY ) pLY pY + pL

Y
pY 0

0
1
s p

L
Y pY 1� (

1
s p

L
Y pY + pLY pY ) pLY pY

0 0
1
s p

L
Y pY 1� 1

s p
L
Y pY

3

77775
(2.26)
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Referring to Figure 2.8, notice how row i covers all the outgoing transitions
of State i. As always, since you either have to remain in the current state
or go to one of the other states, you get

4X

j=1

⇡ij = 1 (2.27)

for each row i. Correspondingly, column j covers all the incoming transi-
tions of State j.

Numeric Single-Literal Learning Outcome

The M matrix provides the transition probabilities of a single step of learn-
ing. Now, collect your state probabilities in a vector ⇡:

⇡ =
⇥
⇡1 ⇡2 ⇡3 ⇡4

⇤
. (2.28)

Then you get the state probabilities after a single learning step by multi-
plying ⇡ with M:

⇡M. (2.29)

Further, you get the state probabilities after two steps of learning by mul-
tiplying with M squared:

⇡M2. (2.30)

By performing a su�ciently large number of learning steps, e.g., 10000
steps, you approximate the stationary distribution of single-literal learning:

⇡M10000. (2.31)

Initialization. To perform the above calculations in practice, all the en-
tries in ⇡ andMmust be replaced with actual probability values. Typically,
you initialize a four-state Literal Automaton to be in State 2:

⇡ =
⇥
0 1 0 0

⇤
, (2.32)

or, alternatively, randomly in either State 2 or State 3:

⇡ =
⇥
0 0.5 0.5 0

⇤
. (2.33)
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Remark. Note that the stationary distribution of a Markov chain does
not depend on the initial state probabilities ⇡, so you can initialize the
state probabilities any way you like.

Remark. The probability values in the transition matrix M depends on
the classification task at hand. You will study several di↵erent classification
tasks later in this chapter.

Analytic Single-Literal Learning Outcome (Optional)

If you like, you can now jump ahead to the next subsection to study the
stationary distribution of single-literal learning. Otherwise, if you prefer to
calculate the stationary distribution exactly, proceed as follows.

In the same way you found the stationary probabilities of Rainy and
Sunny weather, you find the stationary state probabilities ⇡. Again, you
seek the state probabilities that remain una↵ected by the learning step.
Using matrix form makes the formulation compact:

⇡ = ⇡M. (2.34)

Writing out each equation, you get:

⇡1 = ⇡1

⇣
1� pLY pY � pLY pY

⌘
+ ⇡2

pLY pY
s (2.35)

⇡2 =
⇡1

⇣
pLY pY pY + pL

Y
pY

⌘
+

⇡2

⇣
1� pLY pY

s � pLY pY � pL
Y
pY

⌘
+ ⇡3

pLY pY
s

(2.36)

⇡3 = ⇡2

⇣
pLY pY + pLY pY

⌘
+ ⇡3

⇣
1� pLY pY

s � pLY pY
⌘
+ ⇡4

pLY pY
s (2.37)

⇡4 = ⇡3p
L
Y pY + ⇡4

⇣
1� pLY pY

s

⌘
. (2.38)

For instance, Equation 2.35 says that the state probabilities ⇡1 and ⇡2 are
set so that ⇡1 does not change, despite either staying in place (1 ! 1) or
moving from State 2 to State 1 (2 ! 1).

Finally, to solve the equation system, you also need to add the constraint
⇡1 + ⇡2 + ⇡3 + ⇡4 = 1.
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1. 2. 3. 4. 5. 6.

⇡1 = ↵ P (L|Y )
3 P (Y )

2

⇡2 = ↵ P (L|Y )
2 s

�
P (L|Y )P (Y ) + P (L|Y )P (Y )

�
P (Y )

⇡3 = ↵ P (L|Y ) s2
�
P (L|Y )P (Y ) + P (L|Y )P (Y )

�2

⇡4 = ↵ P (L|Y ) s3
�
P (L|Y )P (Y ) + P (L|Y )P (Y )

�2

Table 2.1: Stationary distribution of four-state Literal Automaton.

Analysis of Single-Literal Learning

Table 2.1 contains the stationary distribution of the four-state Literal Au-
tomaton (found by solving Equation 2.34). Each state probability ⇡1, ⇡2,
⇡3, and ⇡4 gets its own expression — a multiplication of several distinct
factors.

Analysis of Expressions. To make it more easy to analyse the expres-
sions, the table organizes the factors in columns:

1. The first column contains the normalization factor ↵, which ensures
that the state probabilities sum to 1: ⇡1 + ⇡2 + ⇡3 + ⇡4 = 1.

2. The second column consists of P (L|Y ). A high P (L|Y ) means that
the literal is frequently True for Y . Observe how an increasing P (L|Y )
shifts the probability distribution to State 4 (Memorized). The Tsetlin
machine learns frequent patterns.

3. The third column covers P (L|Y ). A high P (L|Y ) means that the
literal is infrequently True for Y because P (L|Y ) = 1 � P (L|Y ).
Notice how the probability distribution shifts towards State 1 and
State 2 (Forgotten) with increasing P (L|Y ). The Tsetlin machine

forgets infrequent patterns.

4. The fourth column contains the symbol s from the Forget Value 1

s . A
high s counters the e↵ect of a high P (L|Y ) in column two, shifting
the probability distribution back towards State 4 (Memorized). The

Forget Value
1

s allows you to control the frequency of the patterns

learnt.

5. The fifth column introduces: P (L|Y )P (Y ) + P (L|Y )P (Y ). A high
P (L|Y )P (Y ) in combination with a high P (L|Y )P (Y ) means that the
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literal both recognizes Y and rules out Y , making it discriminative.
The Tsetlin machine seeks discriminative patterns.

6. The sixth column covers P (Y ), which balances the other factors. A
higher P (Y ) increases the probability of staying in State 1 and State 2
(Forgotten).

Finally, observe how each factor increases/decreases exponentially towards
Maximally Forgotten/Maximally Memorized. Increasing the number of Lit-

eral Automaton states improves learning accuracy exponentially.

Analysis of Example Classification Scenarios. The following four
classification scenarios provide further insight on the learning outcome.

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Forgotten Memorized

Figure 2.9: Stationary distribution of four-state Literal Automaton when
s = 1.0, P (Y ) = 0.9, P (L|Y ) = 0.1, P (Y ) = 0.1, and P (L|Y ) = 0.9. The
probability of memorizing the literal is ⇡3 + ⇡4 = 0.04.

• Scenario 1: Tsetlin Machines Forget Infrequent Patterns.
The first scenario involves a low frequency pattern and quick forget-
ting with s = 1.0. That is, the class Y is frequent because P (Y ) =
0.9. However, the literal is True for Y only with probability 0.1,
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P (L|Y ) = 0.1, making it infrequent. This means that the (L, Y )-
observation occurs with probability P (L|Y )P (Y ) = 0.1 · 0.9 = 0.09.
Additionally, class Y is infrequent with P (Y ) = 0.1. The proba-
bility of the literal being False for Y is high, on the other hand:
P (L|Y ) = 0.9. Employing Bayes rule you get: P (Y |L) = P (L|Y )P (Y )

P (L) =
P (L|Y )P (Y )

P (L|Y )P (Y )+(1�P (L|Y ))P (Y )
= 0.09

0.09+0.01 = 0.9 = P (Y ). In other words,

Y and L are independent. The independence means that the lit-
eral does not have any discrimination power. Figure 2.9 shows the
learning outcome when using a four-state Literal Automaton. Notice
that the Tsetlin machine memorizes the literal with low probability:
⇡3 + ⇡4 = 0.04.
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Figure 2.10: Stationary distribution of four-state Literal Automaton when
s = 15.0, P (Y ) = 0.9, P (L|Y ) = 0.1, P (Y ) = 0.1, and P (L|Y ) = 0.9. The
probability of memorizing the literal is ⇡3 + ⇡4 = 0.87.

• Scenario 2: Slower Forgetting Retains Less Frequent Pat-
terns. Continue with the above scenario, but increase s to 15.0. This
means that the Tsetlin machine looks for patterns with frequency
above 1

15.0 ⇡ 0.07. Figure 2.10 shows the new learning outcome. Ob-
serve how the Tsetlin machine with s = 15.0 now memorizes the literal
with probability ⇡3 + ⇡4 = 0.87.
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Figure 2.11: Stationary distribution of four-state Literal Automaton when
s = 15.0, P (Y ) = 0.82, P (L|Y ) = 0.99, P (Y ) = 0.18, and P (L|Y ) = 0.5.
The probability of memorizing the literal is ⇡3 + ⇡4 = 0.9999.

• Scenario 3: Tsetlin Machines Prioritize Patterns That Dis-
criminate Between Classes. In this scenario, the literal predicts
class Y accurately, ruling out class Y . That is, P (Y ) = 0.82, P (L|Y ) =
0.99, P (Y ) = 0.18, and P (L|Y ) = 0.5. Using Bayes rule you get
P (Y |L) = P (L|Y )P (Y )

P (L) = 0.8118
0.9018 = 0.90 6= P (Y ). Accordingly, the literal

is now discriminative. Figure 2.11 shows the learning outcome when
using a four-state Literal Automaton. Notice that the Tsetlin machine
includes the literal in the rule with high probability: ⇡3+⇡4 = 0.9999.

• Scenario 4: Deeper Memory Increases Learning Accuracy.
Proceed from Scenario 3 by increasing the memory depth to eight.
Figure 2.12 shows how the deeper memory makes the stationary dis-
tribution move away from the center. As a result, memorizing the
literal becomes almost certain: ⇡5 + ⇡6 + ⇡7 + ⇡8 ⇡ 1.0.

2.2 Multi-Literal Learning

You are now ready to investigate how the Tsetlin machine coordinates the
learning of multiple literals to build a rule. The tool to use is a two-player
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Figure 2.12: Stationary distribution of eight-state Literal Automaton when
s = 15.0, P (Y ) = 0.82, P (L|Y ) = 0.99, P (Y ) = 0.18, and P (L|Y ) = 0.5.
The probability of memorizing the literal is ⇡5 + ⇡6 + ⇡7 + ⇡8 ⇡ 1.0.

game from game theory — a methodology for studying how decision-makers
interact.

Prisoner’s Dilemma

The well-known Prisoner’s Dilemma game showcases the essence of two-
player games. In Prisoner’s Dilemma, the police have imprisoned two crime
partners in separate cells. The partners cannot communicate with each
other and get the following choice. They can Betray their partner, or they
can Remain Silent. The dilemma is as follows. If both Remain Silent, the
police have little evidence, and the partners get one year in prison each.
However, if one Betrays the other and the other Remains Silent, the police
release the traitor. The unfortunate betrayed one gets twenty years in
prison. This situation leads each partner to Betray the other, but in that
case, they end up with five years in prison each. They would have been
better o↵ with Remain Silent !

Game Matrix. The matrix in Table 2.2 describes the game more for-
mally. It represents the interaction between the two prisoners and is called
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Prisoner Two

Remain Silent Betray

P
r
is
o
n
e
r
O
n
e

Remain Silent

One Year

One Year

Released

Twenty Years

Betray

Twenty Years

Released

Five Years

Five Years

Table 2.2: A two-player game – Prisoner’s Dilemma.

a game matrix. Prisoner One selects a matrix row, and Prisoner Two se-
lects a matrix column. The combined choice singles out a matrix cell that
defines the choice’s outcome. The lower left punishment in the cell is for
Prisoner One. The upper right is for Prisoner Two. For example, if Pris-
oner One selects Remain Silent and Prisoner Two selects Betray, the upper
right cell contains their punishments. Prisoner One gets Twenty Years in
prison, while Prisoner Two is Released.

Maximally
Memorized

Maximally
Forgotten

Memorized

Forgotten

8 
 
7 
 
6 
 
5 
 
4 
 
3 
 
2 
 
1

Figure 2.13: Memory of depth eight with two literals: Literal One and
Literal Two. Being in memory position 5, they are both Memorized. The
resulting rule is: if Literal One and Literal Two then Y .
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Literal Game

Literals in Tsetlin machine learning face a similar situation as the prisoners
in Prisoner’s Dilemma. See, for example, the rule memory in Figure 2.13.
It contains the two literals Literal One and Literal Two. Without commu-
nicating with each other, these decide to either be Memorized or Forgotten.
That is, they choose between taking part in the rule or not taking part. By
analyzing a game of literals, you will understand how they can make this
decision successfully. No communication explains why the Tsetlin machine
learning algorithm is so short — coordination emerges from the Recognize,
Erase, and Reject Feedback.

Rule. Depending on the decisions of the literals you get one of the fol-
lowing rules:

1. if True then Y .

2. if Literal One then Y .

3. if Literal Two then Y .

4. if Literal One and Literal Two then Y .

Note that the condition of the first rule is empty. During learning, an empty
condition is True by default. Of course, which rule you get depends on the
observations you use to update the memory. Recall that a Tsetlin machine
builds many rules, also for class Y . You here study the construction of a
single rule for class Y only.

Observations. A Literal Game fuses many di↵erent games, one game
per kind of observation. Remember how a single literal gives four sorts of
observations: (L, Y ), (L, Y ), (L, Y ), and (L, Y ). With an extra literal, the
number doubles to eight: (L1, L2, Y ), (L1, L2, Y ), (L1, L2, Y ), (L1, L2, Y ),
(L1, L2, Y ), (L1, L2, Y ), (L1, L2, Y ), and (L1, L2, Y ). Here, L1 means that
Literal One is True, while L1 means that Literal One is False, and so on.
The resulting eight games reveal the outcome of Tsetlin machine learning.
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Literal Two

Forgotten Memorized

L
it
e
r
a
l
O
n
e

Forgotten

;

True

L2

True

Memorized

L1

False

L1 ^ L2

False

Literal Two

Forgotten Memorized

L
it
e
r
a
l
O
n
e

Forgotten

*
#

*
#

Memorized

#
#

#
#

Table 2.3: Literal Game for observation (L1, L2, Y ).

Example Game. An example with observation (L1, L2, Y ) explains how
to create the eight games. First, take a look at the left matrix in Table 2.3.
Literal One is either Forgotten or Memorized. The same goes for Literal

Two. Notice how each matrix cell shows which literals take part in the
rule’s condition. The cell also contains the condition’s truth value for the
(L1, L2, Y )-observation. This is all you need to determine the outcomes of
the (L1, L2, Y )-game. The right matrix in Table 2.3 shows these outcomes.
Let us explore each cell of the matrix:

1. The (Literal One Forgotten, Literal Two Forgotten) cell gives a rule
without literals — the rule’s condition is empty. Use the symbol ;
for empty conditions. Recall that an empty condition is True by
definition. Further, the observed class (L1, L2, Y ) is the same as the
rule’s class. As you know from Chapter 1, you then get Recognize
Feedback. Recognize Feedback pushes False literals downwards and
True literals upwards in memory. The downward arrow # in the cell
means push Literal One downwards (forget it). The upward arrow *
says pull Literal Two upwards (memorize it). Figure 2.14 illustrates
such an update. Note that the upward arrow is double to signify
that memorization typically is stronger than forgetting (e.g., with
Memorize Value 1.0 and Forget Value 1

s).

2. The (Literal One Memorized, Literal Two Forgotten) cell produces
a rule with Literal One only. Literal One is False in observation
(L1, L2, Y ) so the rule’s condition is False. Since the observed class
is the same as the rule’s class, you get Erase Feedback. The two
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Forgotten
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Figure 2.14: Memory update for observation (L1, L2, Y ), giving Recognize
Feedback. Based on their truth values, the feedback pushes Literal One

downwards and pulls Literal Two upwards in memory.

downward arrows ## mean: push both literals downwards in memory
(forget them).

3. The (Literal One Forgotten, Literal Two Memorized) cell yields a rule
with Literal Two. Since Literal Two in (L1, L2, Y ) is True, the rule’s
condition is True. Again, you get Recognize Feedback.

4. Finally, the (Literal One Memorized, Literal Two Memorized) cell
gives a rule with both literals. Let ^ be shorthand notation for and.
The rule’s condition L1^L2 is False because Literal One is False. Yet
again, you get Erase Feedback.

Complete List of Games. Using Recognize, Erase, and Reject Feedback
from Chapter 1, the above approach applies to all of the eight kinds of
observations. The matrix in Table 2.4 specifies the resulting games. Each
matrix cell lists the possible observations in the first column (Obs.). The
second column (Rule) calculates the truth value of the rule. Finally, the
third column lists the game outcome. The outcome is either memorize
literal (*), forget literal (#), or nothing (�). The first outcome in the pairs
applies to Literal One and the second to Literal Two.
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Literal Two Forgotten Literal Two Memorized

L
it
e
r
a
l
O
n
e
F
o
r
g
o
t
t
e
n

Obs. Rule Outcome

(L1, L2, Y ) ; = True **

(L1, L2, Y ) ; = True *#

(L1, L2, Y ) ; = True #*

(L1, L2, Y ) ; = True ##

(L1, L2, Y ) ; = True ��

(L1, L2, Y ) ; = True � *

(L1, L2, Y ) ; = True * �

(L1, L2, Y ) ; = True **

Obs. Rule Outcome

(L1, L2, Y ) L2 = True **

(L1, L2, Y ) L2 = False ##

(L1, L2, Y ) L2 = True #*

(L1, L2, Y ) L2 = False ##

(L1, L2, Y ) L2 = True ��

(L1, L2, Y ) L2 = False ��

(L1, L2, Y ) L2 = True * �

(L1, L2, Y ) L2 = False ��

L
it
e
r
a
l
O
n
e
M
e
m
o
r
iz
e
d

Obs. Rule Outcome

(L1, L2, Y ) L1 = True **

(L1, L2, Y ) L1 = True *#

(L1, L2, Y ) L1 = False ##

(L1, L2, Y ) L1 = False ##

(L1, L2, Y ) L1 = True ��

(L1, L2, Y ) L1 = True � *

(L1, L2, Y ) L1 = False ��

(L1, L2, Y ) L1 = False ��

Obs. Rule Outcome

(L1, L2, Y ) L1 ^ L2 = True **

(L1, L2, Y ) L1 ^ L2 = False ##

(L1, L2, Y ) L1 ^ L2 = False ##

(L1, L2, Y ) L1 ^ L2 = False ##

(L1, L2, Y ) L1 ^ L2 = True ��

(L1, L2, Y ) L1 ^ L2 = False ��

(L1, L2, Y ) L1 ^ L2 = False ��

(L1, L2, Y ) L1 ^ L2 = False ��

Table 2.4: The eight Literal Games in one matrix.

Markov Chain of Literal Game

You are now about to discover the outcome of the two-literal Tsetlin ma-
chine learning process. The final piece of information you need is the obser-
vation probabilities P (L1, L2|Y )P (Y ), P (L1, L2|Y )P (Y ), P (L1, L2|Y )P (Y ),
P (L1, L2|Y )P (Y ), P (L1, L2|Y )P (Y ), P (L1, L2|Y )P (Y ), P (L1, L2|Y )P (Y ),
and P (L1, L2|Y )P (Y ). These probabilities define the learning task at hand
and vary from task to task.

Transition Graph of Literal Game. You follow the same procedure as
you did for the single-literal case. First, you construct the Markov chain of
the learning process from the observation probabilities and the Recognize,
Erase, and Reject Feedback. Using a single literal with four memory posi-
tions, you got a four state Markov chain. With two literals, however, the
Markov chain gets 4 ⇥ 4 = 16 states. Figure 2.15 shows the reason. You
get one Markov chain state per combination of literal memory positions. In
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Figure 2.15: States and transitions of the Markov chain for a literal pair,
each with four memory positions.

each Markov chain state in the figure, the first number is the memory po-
sition of Literal One. The second number is the memory position of Literal
Two. Observe how both of the literals can change position in memory in
the same Markov chain transition. This means that when you for instance
are in state (3, 2), you can transition to nine di↵erent states: (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), and (4, 3).

To finish building the Markov chain, you need the probability of each of
these transitions. Three example transition probabilities explain the pro-
cedure to follow. Figure 2.16 shows the states and transitions for memory
depth two. With only two memory positions, the Markov chain states cor-
respond directly to the Literal Game cells in Table 2.4. The state FF in
the Markov chain, for instance, corresponds to the (Literal One Forgotten,
Literal Two Forgotten)-cell of the Literal Game.
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F - Forgotten
M - Memorized

Figure 2.16: Transition graph of Markov chain for two interacting literals.

Transition MM ! FM . The starting state of this transition is MM .
This state means that we are in the lower right quadrant of Table 2.4.
The quadrant reveals that only observations (L1, L2, Y ), (L1, L2, Y ), and
(L1, L2, Y ) give the outcome ##, which makes the transition possible. Ad-
ditionally, to get to the FM -state, Literal One must change its memory
position. This happens with probability 1

s . Further, Literal Two must stay
in place, which happens with probability s�1

s . Accordingly, you get the
following transition probability:

P (MM ! FM) =
�
1

s

� �
s�1

s

�
pL1L2
Y pY + (2.39)

�
1

s

� �
s�1

s

�
pL1L2
Y pY + (2.40)

�
1

s

� �
s�1

s

�
pL1L2
Y pY (2.41)

=
�
1

s

� �
s�1

s

� ⇣
pL1L2
Y + pL1L2

Y + pL1L2
Y

⌘
pY . (2.42)

Transition MM ! FF . With the same starting state as above, you are
still in the lower right quadrant of Table 2.4. However, now both of the
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literals need to change position in memory to get to state FF :

P (MM ! FF ) =
�
1

s

� �
1

s

� ⇣
pL1L2
Y + pL1L2

Y + pL1L2
Y

⌘
pY . (2.43)

Transition FF ! MF . This transition starts in state FF . The state
corresponds to the upper left quadrant of Table 2.4. Observation (L1, L2, Y )
yields the outcome *#. The down arrow # becomes ine↵ective because
the literal is already Maximally Forgotten. Finally, observation (L1, L2, Y )
gives the outcome * �. Accordingly, the probability of transitioning to MF
becomes:

P (FF ! MF ) = pL1L2
Y pY + pL1L2

Y
pY . (2.44)

Using Table 2.4 in the above manner, you can construct the transition
matrix M, which collects all the transition probabilities. With an initial
state distribution ⇡ and the transition matrix M in place, you proceed
as for the single-literal case. You find the outcome of two-literal Tsetlin
machine learning in the stationary distribution of the Markov chain:

⇡M10000. (2.45)

Using the stationary distribution, four scenarios give insight into how a
Tsetlin machine coordinates literal learning.

Analysis of Two-Literal Learning

Scenario 1: Tsetlin Machines Select Informative Literals. In the
first scenario, the patterns are equally frequent: P (L1L2) = P (L1L2) =
P (L1L2) = P (L1L2) = 0.25. Only Literal Two provides information on
the class. If Literal Two is True, you predict the class with precision 0.9:
P (Y |L1L2) = 0.9 and P (Y |L1L2) = 0.9. If only Literal One is True,
however, you do not get any information on the class: P (Y |L1L2) = 0.5.
Finally, when both literals are False, class Y is most likely: P (Y |L1L2) =
0.2. Table 2.5 contains the learning outcome for eight memory positions
and s = 1.0. Notice how the Tsetlin machine picks out the informative
literal – Literal Two. Also, observe how the probability distribution peaks
in the upper right quadrant where Literal One is in memory position 1 and
Literal Two is in memory position 8.
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Literal Two Forgotten Literal Two Memorized

1 2 3 4 5 6 7 8
L
it
.
O
n
e
F
o
r
g
.

1 .00 .00 .00 .01 .02 .06 .11 .16
2 .00 .00 .00 .00 .01 .02 .05 .14
3 .00 .00 .00 .00 .01 .01 .03 .10
4 .00 .00 .00 .01 .01 .01 .02 .05

L
it
.
O
n
e
M
e
m
.

5 .00 .00 .00 .00 .01 .01 .01 .03
6 .00 .00 .00 .00 .00 .01 .01 .01
7 .00 .00 .00 .00 .00 .00 .01 .01
8 .00 .00 .00 .00 .00 .00 .00 .01

Table 2.5: Learning outcome with two literal automata when s = 1.0,
P (L1L2) = P (L1L2) = P (L1L2) = P (L1L2) = 0.25, P (Y |L1L2) = 0.9,
P (Y |L1L2) = 0.9, P (Y |L1L2) = 0.5, and P (Y |L1L2) = 0.2. A double line
marks the decision boundary: Forgotten vs. Memorized.

Literal Two Forgotten Literal Two Memorized

1 2 3 4 5 6 7 8

L
it
.
O
n
e
F
o
r
g
.

1 .00 .00 .00 .01 .02 .04 .06 .07
2 .00 .00 .00 .00 .01 .02 .03 .06
3 .00 .00 .00 .00 .01 .01 .02 .04
4 .01 .00 .00 .01 .01 .01 .01 .02

L
it
.
O
n
e
M
e
m
.

5 .02 .01 .01 .01 .01 .00 .01 .01
6 .04 .02 .01 .01 .00 .01 .00 .01
7 .06 .03 .02 .01 .01 .00 .01 .00
8 .07 .06 .04 .02 .01 .01 .00 .01

Table 2.6: Learning outcome with two literals when s = 1.0, P (L1L2) =
P (L1L2) = P (L1L2) = P (L1L2) = 0.25, P (Y |L1L2) = 0.99, P (Y |L1L2) =
0.9, P (Y |L1L2) = 0.9, and P (Y |L1L2) = 0.1. A double line marks the
decision boundary: Forgotten vs. Memorized.

Scenario 2: Tsetlin Machines Learn Multiple Alternatives. In
the second scenario, both literals are informative. That is, when only
one of them is True, your precision becomes 0.9: P (Y |L1L2) = 0.9 and
P (Y |L1L2) = 0.9. When both are true you get precision 0.99: P (Y |L1L2) =
0.99. Again, the observations occur with equal probability: P (L1L2) =
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P (L1L2) = P (L1L2) = P (L1L2) = 0.25. With an s-value of 1.0, only a
single literal gives su�ciently high pattern frequency. You find the learning
outcome in Table 2.6. Observe the two peaks, one where Literal One takes
part in the rule and one where Literal Two takes part. Throughout a single
learning session, you will observe each alternative, and the Tsetlin machine
will continue to revisit both as learning continues.

Literal Two Forgotten Literal Two Memorized

1 2 3 4 5 6 7 8

L
it
.
O
n
e
F
o
r
g
.

1 .00 .00 .00 .01 .02 .05 .09 .12
2 .00 .00 .00 .00 .01 .02 .05 .11
3 .00 .00 .00 .00 .01 .01 .02 .08
4 .00 .00 .00 .01 .01 .01 .02 .04

L
it
.
O
n
e
M
e
m
.

5 .01 .01 .01 .01 .02 .01 .01 .02
6 .01 .01 .01 .01 .00 .01 .01 .01
7 .01 .01 .01 .01 .01 .00 .01 .01
8 .01 .01 .01 .01 .01 .00 .00 .01

Table 2.7: Learning outcome with two literals when s = 1.0, P (L1L2) =
P (L1L2) = P (L1L2) = P (L1L2) = 0.25, P (Y |L1L2) = 0.97, P (Y |L1L2) =
0.7, P (Y |L1L2) = 0.9, and P (Y |L1L2) = 0.1. A double line marks the
decision boundary: Forgotten vs. Memorized.

Scenario 3: Tsetlin Machines Pick the Best Literal. In the third
scenario, we reduce the prediction power of Literal One to P (Y |L1L2) = 0.7.
It is still informative, yet, now Literal Two is the better choice. Table 2.7
shows the learning outcome. Note how the learning outcome distribution
now peaks at memory position 1 for Literal One and position 8 for Literal
Two. In other words, the learning outcome singles out the most informative
literal.

Scenario 4: Tsetlin Machines Increase Precision by Combining
Literals. When you increase s in Scenario 2 from 1.0 to 4.0, you allow
the Tsetlin machine to learn less frequent patterns. The learning outcome
is in Table 2.8. Notice how the increase in s shifts the peak of the stationary
distribution to memory position 8 for both literals. This produces a rule
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Literal Two Forgotten Literal Two Memorized

1 2 3 4 5 6 7 8
L
it
.
O
n
e
F
o
r
g
.

1 .00 .00 .00 .00 .00 .00 .00 .00
2 .00 .00 .00 .00 .00 .00 .00 .00
3 .00 .00 .00 .00 .00 .00 .00 .01
4 .00 .00 .00 .00 .00 .00 .01 .01

L
it
.
O
n
e
M
e
m
.

5 .00 .00 .00 .00 .01 .01 .02 .02
6 .00 .00 .00 .00 .01 .02 .04 .04
7 .00 .00 .00 .01 .02 .04 .08 .11
8 .00 .00 .01 .01 .02 .04 .11 .36

Table 2.8: Learning outcome with two literals when s = 4.0, P (L1L2) =
P (L1L2) = P (L1L2) = P (L1L2) = 0.25, P (Y |L1L2) = 0.99, P (Y |L1L2) =
0.9, P (Y |L1L2) = 0.9, and P (Y |L1L2) = 0.1. A double line marks the
decision boundary: Forgotten vs. Memorized.

with precision 0.99, where both Literal One and Literal Two take part in
the rule.

2.3 Rule Interaction

The next and final analysis concerns learning of multiple rules. The or-
relation between the literals x1 and x2 showcases this challenge:

x1 or x2. (2.46)

You get class Y whenever either x1, x2, or both of them are True. Otherwise,
you get class Y . Assume that you can only build two rules for class Y . Then
only the following pair of rules solve the problem:

R1: if x1 then Y .

R2: if x2 then Y .

When x1 is True, rule R1 ensures correct output. Rule R2 takes care of
x2. Note that rule R3 below also is correct:
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Rule Two

x2 Forgotten Memorized

x1 Forgotten Memorized Forgotten Memorized

R
u
le

O
n
e

Forg.
Forg.

R1: ;

R2: ;

R1: ;

R2: x1

R1: ;

R2: x2

R1: ;

R2: x1 ^ x2

Mem.
R1: x1

R2: ;

R1: x1

R2: x1

R1: x1

R2: x2

R1: x1

R2: x1 ^ x2

Mem.
Forg.

R1: x2

R2: ;

R1: x2

R2: x1

R1: x2

R2: x2

R1: x2

R2: x1 ^ x2

Mem.
R1: x1 ^ x2

R2: ;

R1: x1 ^ x2

R2: x1

R1: x1 ^ x2

R2: x2

R1: x1 ^ x2

R2: x1 ^ x2

Table 2.9: A game between two rules: Rule One and Rule Two. Each rule
has its own memory containing two literals: x1 and x2. A literal decides by
itself to be Forgotten or Memorized. The resulting four decisions lead to 16
di↵erent rule configurations. The solution configurations for the or-relation
are marked in bold.

R3: if x1 and x2 then Y .

However, you will not be able to capture all the observations that make the
or-relation True if you use rule R3 in combination with either rule R1 or
rule R2.

Two-Rule Game. Again, you get a Literal Game. However, this time
the game has four players. Table 2.9 shows the game. Each player de-
cides independently whether to Forget or Memorize its literal. The two
row-players build Rule One (R1) and the two column-players build Rule
Two (R2). Column 1/Row 1 covers literal x2 and Column 2/Row 2 cov-
ers literal x1. With four decision makers, you get 16 di↵erent outcomes.
Each outcome is a pair of rules. Note that the two outcomes that yield the
or-relation are in bold.

Tsetlin Machine Memory and Markov Chain. Equip each rule with
a four-position memory, shown in Figure 2.17. You build a Markov chain
for these two together in the same way that you built a Markov chain for
one rule. The new chain gets (4 · 4)(4 · 4) = 256 transitions. Building the
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Figure 2.17: Memory of two rules.

chain is left as an exercise. In brief, you go from one rule to two rules in
the same way as you go from rolling one to two dice. That is, each die
roll is independent so you get the joint probability by multiplication. The
probability of rolling two sixes is for instance: 1

6
· 1

6
= 1

36
.

No Coordination. The learning outcome when the rules operate without
coordination is shown in Table 2.10. The literals are independent and True

with equal probability: P (x1) = P (x2) = 0.5. Further, there is 10% output
noise: P (Y |x1 _ x2) = 0.9 and P (Y |¬(x1 _ x2)) = 0.1. Here, the ¬-symbol
means logical not. Observe how both rule memories end up in memory
position 4 for both literals (with the highest probability). That is, you
get two instances of rule R3. This is a sub-optimal configuration that
only captures literal truth values (x1 = True, x2 = True), but not (x1 =
True, x2 = False) or (x1 = False, x2 = True).

Coordination With Vote Margin. Finally, add a Voting Margin of
value 2. Then the updating of each rule is suppressed based on the number
of votes on Y , contrasted against the observed class (Y or Y ). Suppression
operates as follows:

• Zero Votes on Y . This means that none of the rule conditions are
True.

– Class Y observed. Suppress rule feedback with probability 1.0.

– Class Y observed. Suppress rule feedback with probability 0.0.
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Rule Two

x2 1 2 3 4

x1 1 2 3 4 1 2 3 4 1 2 3 4 4 3 2 1

R
u
le

O
n
e

1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 .01 0 0 .01 .01 .01 .01 .01 0

3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 .01 0 0 .01 .01 .02 .01 .01 0

4 0 0 0 0 0 0 0 .01 0 0 .01 .02 .05 .02 .01 0

4

4 0 0 0 0 0 0 0 .01 0 0 .02 .05 .31 .05 .01 0

3 0 0 0 0 0 0 0 .01 0 0 .01 .02 .05 .02 .01 0

2 0 0 0 0 0 0 0 .01 0 0 .01 .01 .01 .01 .01 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.10: Learning outcome with two interacting rules without a Vote
Margin. A double line marks the decision boundary: Forgotten vs. Memo-

rized.

• One Vote on Y . This means that a single rule condition is True.

– Class Y observed. Suppress rule feedback with probability 0.5.

– Class Y observed. Suppress rule feedback with probability 0.5.

• Two Votes on Y . This means that both rule conditions are True.

– Class Y observed. Suppress rule feedback with probability 0.0.

– Class Y observed. Suppress rule feedback with probability 1.0.

This simple modification to the updating of rules completely changes the
dynamics of learning. Table 2.11 shows the resulting learning outcome. As
you see, now the Tsetlin machine learning produces both:
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Rule Two

x2 1 2 3 4

x1 1 2 3 4 4 3 2 1 4 3 2 1 1 2 3 4

R
u
le

O
n
e

1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 .01 .04 .01 0 0

4 0 0 0 0 0 0 0 0 0 0 .01 .04 .16 .04 0 0

2

4 0 0 0 0 0 0 0 0 0 0 0 .01 .04 .01 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 .01 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 .01 .04 .01 0 0 0 0 0 0 0 0 0 0 0

4

1 0 0 .04 .16 .04 .01 0 0 0 0 0 0 0 0 0 0

2 0 0 .01 .04 .01 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.11: Learning outcome with two interacting rules with Vote Margin.
A double line marks the decision boundary: Forgotten vs. Memorized.

R1: if x1 then Y .

R2: if x2 then Y .

and the alternative solution:

R1: if x2 then Y .

R2: if x1 then Y .

Any sub-optimal solution involving rule R3 occurs with zero probability.
Hence, the power of the scheme!
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2.4 Summary

Here are the main points from this chapter:

• Single-literal learning in Tsetlin machines is a stochastic process that
takes the form of aMarkov chain. The Markov chain mixes Recognize,
Erase, and Reject feedback based the classification problem at hand.
Specifying the Markov chain, you obtain formulas that describe the
learning outcome exactly. You can also approximate the learning
outcome by means of the transition matrix of the chain.

• The outcome of single-literal learning reveals how the Tsetlin ma-
chine picks up frequent literals, emphasizing literals that distinguish
between objects of di↵erent classes. The outcome also shows that
learning gets more accurate with increasing memory depth.

• When you introduce several literals, you get a game between literals.
That is, each literal is a decision-maker that decides whether to take
part in the rule at hand. A game matrix specifies the outcome of this
game, yielding a more complex Markov chain that captures literal
interaction. The multi-literal learning outcome shows how the Tsetlin
machine selects the best literals out of many and combines multiple
for increased precision.

• With multiple rules, each rule gets its own team of decision-makers.
These teams jointly construct all of the rules in every round of the
game. The resulting stochastic process covers how rule interaction
emerges from literal interaction. Furthermore, the process shows how
the Voting Margin helps the Tsetlin machine avoid sub-optimal con-
figurations, producing optimal ones instead.

• Overall, Tsetlin machine learning moves towards a stationary proba-
bility distribution over rule configurations. The stationary distribu-
tion is decided by the classification problem itself, the memory depth,
the Forget Value, and the Memorize Value, but not the initialization
happening at start of learning. This means that Tsetlin machines
learn continuously. The end-point of learning is simultaneously the
starting point for further learning.
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